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Abstract. We present a novel hierarchical spatial partitioning method for creat-
ing interpolating implicit surfaces using compactly supported radial basis func-
tions (RBFs) from scattered surface data. From this hierarchy of functions we can
create a range of models from coarse to fine, where a coarse model approximates
and a fine model interpolates. Furthermore, our method elegantly handles irregu-
larly sampled data and hole filling because of its multiresolutional approach. Like
related methods, we combine neighboring patches without surface discontinuities
by overlapping their embedding functions. However, unlike partition-of-unity ap-
proaches we do not require an additional explicit blending function to combine
patches. Rather, we take advantage of the compact extent of the basis functions to
directly solve for each patch’s embedding function in a way that does not cause
error in neighboring patches. Avoiding overlap error is accomplished by adding
phantom constraints to each patch at locations where a neighboring patch has
regular constraints within the area of overlap (the function’s radius of support).
Phantom constraints are also used to ensure the correct results between differ-
ent levels of the hierarchy. This approach leads to efficient evaluation because
we can combine the relevant embedding functions at each point through simple
summation. We demonstrate our method on the Thai statue from the Stanford 3D
Scanning Repository. Using hierarchical compactly supported RBFs we interpo-
late all 5 million vertices of the model.

1 Introduction

Many applications in computer graphics require smoothly interpolating a large set of
points on or near a surface. These points may originate as unorganized point sets such
as from a 3-D scanning system. They may also come in organized or semiorganized sets
from the vertices of polygonal models, which once interpolated can provide a smoother
surface than the polygonal one and can be converted to other representations, includ-
ing a more finely polygonalized one if desired. Such point sets may also come from
computer vision analysis of an image volume or from interactive modeling tools.

Numerous techniques have emerged for converting point sets to implicit models that
interpolate (or approximate) these points [1–15]. Broadly, we call these interpolating
implicit surfaces.3 These methods take the same general approach: known points on the
surface define where the implicit surface’s embedding function should have a value of 0;
known off-surface points, surface normals (either known or fitted), or other assumptions

3 These have also been known in the literature as variational implicit surfaces, implicit surfaces
that interpolate, and constraint-based implicit surfaces by various authors.



define where the embedding function has nonzero values; and the embedding function
is then interpolated using scattered data interpolation techniques such as radial basis
functions (RBFs) [1, 2, 4–7, 10], (implicit) moving least squares [14], or partition-of-
unity blending of local fitting using these or other interpolation methods [8, 11, 12].

Fig. 1. A simple two-level hierarchy of the
Stanford bunny model. The constraints of
the root RBF are dark, larger octohedra,
and each child partition is indicated in dif-
ferent shapes, styles and colors.

Many implementations [1, 2, 6] use
thin-plate splines, but this requires the
solving of a large, full, generally ill-
conditioned system of equations and
quickly becomes computationally im-
practical for large models. Other RBFs
with infinite support [7, for example]
have similar limitations. Various methods
have been used to accelerate RBF ap-
proaches, including using compactly sup-
ported RBFs to make the required sys-
tem sparse [4, 9, 10, 13, 16] or approxi-
mating a large set of constraints by a well-
selected subset [3, 5]. Others accelerate
the surface fitting by subdividing the sur-
face into smaller patches, fitting a surface
(or the embedding function for that sur-
face) to each patch, then combining the
patches through blending [8, 11, 12, 14].

This paper presents a novel method for efficiently creating compactly supported
RBF-based implicit representations from the vertices of a polygonal model using hi-
erarchical spatial partitioning as illustrated in Figure 1. Unlike other approaches that
combine local interpolations through compactly supported blending functions, no ex-
plicit blending function is required—each level and partitioned patch is calculated so
that a simple linear combination of them produces an exact interpolation.

2 Related Work and Background

Our implementation of compactly-supported RBFs follows most closely that detailed
in [4], which is based on the general approach of Turk et al. [2, 6].

The basic method begins with a set of points known to lie on the desired implicit
surface and constrains the interpolated embedding function to have a value of 0 at these
points. Using the method of [6], non-zero constraints (often called “normal constraints”)
are placed at fixed offsets in the direction of the known or desired normals at these
points. This produces a set of point/value constraints P = {(ci,hi)} such that hi = 0 for
all ci on the surface and hi = 1 for all ci at a fixed offset from that surface. An embedding
function f (x) is then interpolated from these constraints such that f (ci) = hi.

This interpolation is done using an RBF φ(r) by defining the embedding function f
as a weighted sum of these basis functions centered at each of the constraints:

f (x) = ∑
(ci,hi)∈P

di φ(‖x− ci‖) (1)



where di is the weight of the radial basis function positioned at ci.4 To solve for the
unknown weights di, substitute each constraint f (ci) = hi: into Eq. 1:

∀ci : f (ci) = ∑
(c j ,h j)∈P

d jφ(‖ci− c j‖) = hi (2)

By using compactly supported RBFs one can make this system of equations sparse [4,
9]. By efficiently organizing the points spatially, one can also reduce the time required to
compute the system itself. As the size of the model increases, one can commensurately
reduce the radius of support for the RBFs, thus increasing efficiency while keeping the
data density approximately constant.

The primary drawback to using compactly supported radial basis functions alone
for surface modeling is that the embedding function is 0 outside one radius of support
from the surface. This does not preclude polygonalization, ray-tracing, or many other
uses of the surface because it is relatively easy to separate zero sets that result from
lack of support. However, it does limit their use for CSG and other operations for which
implicit surfaces are useful. The compact support also causes them to fail in areas with
low data density, in the limit failing where the surface has holes larger than the support.
(See [10] for an excellent discussion of the limitations of compactly supported RBFs
for surface modeling, with additional empirical analysis in [16].) These limitations can
be overcome using hierarchical, or multilevel, approaches, such as [17, 18] for scattered
data interpolation, and [10, 13] for compactly supported RBFs.

Another way to accelerate the surface fitting is to spatially subdivide the surface
points into separate patches, then interpolate (or approximate) each patch and blend the
results using partition-of-unity or similar blending techniques [8, 11, 12, 14]. By blend-
ing local approximations instead of directly trying to fit the entire model at once, this
method provides efficient processing for very large models. Key to these partition-of-
unity or other blending methods is the use of a compactly supported weighting function
to blend separate patches or the effects of individual points in a neighborhood.

We demonstrate a new method for creating and blending interpolations for separate
patches that uses compactly supported RBFs to interpolate the patches and, due to their
compactly supported nature, does not require the a separate explicit blending function.

3 Method

As with other hierarchical partitioning approaches, our method builds a large-scale ap-
proximating embedding function then successively refines it with smaller-scale incre-
mental functions. The two main components of our method are selecting the points
for each node in the hierarchy and creating phantom constraints to handle overlapping
function domains. Using phantom constraints to clamp each embedding function allows
us to combine them simply by addition rather than requiring a blending function.

3.1 Building a Hierarchy

To build a hierarchy we use an octree to span the input points, which is traversed from
the top down. Points are first selected for the root, producing an embedding function for

4 For some RBFs, including thin-plate splines, an additional polynomial may be required.



a base model. Then points for the each of the children of the root are selected, adding
detail at a finer resolution. After solving the refining embedding functions for the eight
children, we proceed to the grandchildren, and so on, stopping when all points have
been included in the hierarchy. When building any given node of the hierarchy, the
functions for the nodes above it have already been solved.

Selecting Points For a Node Points in a node’s octant are selected based on a random
Poisson-disk distribution. However, our initial implementation, the traditional Poisson-
disk distribution where there is a minimum Euclidean distance between any two points,
tended to undersample regions of high curvature. We needed to allow sample points to
be closer together in high curvature regions.

Comparing the normal directions of nearby points is an efficient estimate of local
curvature. A region with points that have disparate normals requires a higher sampling
rate. To achieve adaptive sampling we use a modified distance function based on the
points’ normals. If two points have identical normals, the distance between them is the
same as the Euclidean distance. However, if their normals differ we would like them to
appear to be farther apart. The net effect is to place samples closer together in areas of
higher curvature.

We have experimentally developed an admittedly arbitrary modified distance func-
tion that scales the Euclidean distance between points x1 and x2 by a quadratic function
of the angle θ between the normal vectors:

dist(x1,x2,θ) = ‖x1−x2‖
(

1
2 cos(θ)2− 7

2 cos(θ)+4
)

(3)

Selecting Points For the Root Selecting points for the root embedding function is
especially important because error in the root propagates throughout the hierarchy. The
more error there is in a parent node, the more “energy” required at a child node to bend
the embedding function to fit. Since the root node affects all other nodes, we are more
particular in selecting its points.

At the root node, in addition to the modified Poisson-disk distribution mentioned
earlier, we attempt to select points that are “representative” of a local region. The goal
is to pick points that capture the larger-scale shape of a region, pushing smaller scale
detail or noise to nodes lower in the hierarchy.

For the root node, candidate points are screened by comparing the normal direction
for each point with the normals of points around it and rejecting those that are too
disparate. Specifically, if the average dot product of a candidate point’s normal with the
normals around it is below a specific threshold (0.1), the point is not selected.

Figure 1 shows a two-level hierarchy of RBFs of the Stanford bunny. The hierarchy
consists of a root RBF and eight children. The nodes’ constraints are differentiated by
style. The root’s constraints are dark blue, slightly larger octahedra.

Embedding Function For a Node Once points have been selected for interpolation
within a node, interior, surface, and exterior constraints are placed for each point. The
embedding function also requires a level set value for each constraint and a radius of



support for the compact RBF. The root embedding function should produce the correct
results at the locations of the root’s constraints. Therefore the constraint values at the
root are determined solely by the type of constraint. By default the functions’ values at
surface, interior and exterior constraints should be 0, 1 and −1 respectively.

Using the notation of Eqs. 1 and 2, we can write the root embedding function f0
defined by the set of root constraints P0 = {(ci,hi)} using root-level RBF φ0(r):

f0(x) = ∑
(ci,hi)∈P0

d0i φ0(‖x− ci‖) (4)

where the root-level weights d0i are determined by solving the system of equations

∀ci ∈ P0 : f0(ci) = hi (5)

The embedding function of a child node is an increment that corrects the parent
function at the location of the child node’s constraints. For example, at a child node’s
surface constraint the net function should to evaluate to 0. However, the parent function
evaluates to some value α . Therefore the child’s function should evaluate to −α to
correct the error. Thus at each child constraint location, the hierarchy of embedding
functions above the child node is evaluated, and a value is given to the child constraint
that corrects the result of the nodes above it.

Thus, we may write a single child level’s embedding function f1 defined by the
child node’s constraints P1 = {(ci,hi)} and child-level RBF φ1(r), along with the parent
node’s constraints P0 and embedding function f0, as follows:

f1(x) = ∑
(ci,hi)∈P0∪P1

d1i φ1(‖x− ci‖) (6)

where the child-level weights d1i are determined by solving the system of equations

∀ci ∈ P0∪P1 : f1(ci) = hi− f0(ci) (7)

Note that each level k of the hierarchy uses its own RBF φk(r) and weights dki.
Since Eq. 5 already holds for the root constraints, the root embedding function f0

already evaluates correctly at the root constraints and no correction is required by the
child embedding function:

∀ci ∈ P0 : f1(ci) = 0 (8)

This process may be continued to additional levels of the hierarchy and extended to
include multiple nodes at each level. Solving for and combining embedding functions
for multiple nodes at each level is addressed in Section 3.2.

Once all the constraint values for a node have been determined, the radius of support
for the compact RBF for that node must be determined. We attempt to keep the same
number of points per node, and nodes at different levels in the hierarchy cover different-
sized regions. Naturally different-level nodes should have compact RBFs with different
radii. In our approach the user selects the radius for the root, and each descendant is
given a radius proportional to that root radius and to its own size.

Typically compact RBFs are used for the embedding functions of all of the nodes
in the hierarchy, but using only compactly supported RBFs have the problem of the



function being undefined in some regions. Any location that is outside of all constraints’
radii of support will not have a defined embedding function. Therefore we also allow
the option of using a thin plate spline (TPS) RBF for the root node (see Figure 3),
eliminating the problem. Although a TPS is much more expensive to solve and evaluate,
the embedding function for the root node uses only a limited subset of points, making
it still practical even for otherwise large models.

3.2 Phantom Constraints

Managing embedding functions with overlapping extent is a common problem that oc-
curs when attempting to partition a point set. To interpolate all the points in a data set,
we must guarantee that the combination of all embedding functions that impinge on a
point produces the exact value we require. Our task is simplified by the compact RBF’s
limited extent. Therefore at any given point only relatively few embedding functions
need to be combined and evaluated.

Our approach is to place phantom constraints in a given node to clamp its embed-
ding function. Phantom constraints are placed in regions where the extent of the em-
bedding functions for different nodes overlap, requiring us to suppress the influence of
the node’s embedding function. In this way, phantom constraints serve much the same
purpose as the blending function in partition-of-unity approaches but without explicit
blending during evaluation of the implicit surface’s embedding function. The locations
for phantom constraints fall into two categories: locations that have been inherited from
regular constraints in ancestral nodes, and locations from regular constraints in adjacent
sibling nodes. Using a top-down approach means constraint locations from descendant
nodes can be ignored.

A child node’s embedding function is an incremental change applied to the sum
of its ancestor embedding functions as mentioned in Section 3.1. For our purposes an
ancestor node is any node in the octree above a given node whose embedding function
overlaps with that node, not just direct ancestors. Since a child embedding function is
an increment to the functions above it, a regular constraint of the child is given a value
that corrects the summed ancestor functions. Also, phantom constraints with values of 0
are placed in the child RBF at all ancestor constraint locations within the child’s bounds
to ensure the child’s function does not produce erroneous results at these locations.

Similarly, the interpolation within a node should not be incorrectly affected by
neighboring sibling nodes. Therefore, any regular constraints of neighboring siblings
that overlap with the extent of a node’s embedding function become corresponding
phantom constraints for the node.

Extending the notation of Eqs. 4–8, we define Plk = {(ci,hi)} as the set of constraints
for node k of level l. We also define P̂lk = {(ci,hi)} as the set of phantom constraints
relevant to this node and the function f̂lk as the sum of all other embedding functions
relevant to this node (i.e., those higher up in the hierarchy whose support-expanded re-
gions overlap this node’s support-expanded region). We may thus write the embedding
function for this child node in terms of these constraints and the node’s RBF φlk(r) as

flk(x) = ∑
(ci,hi)∈Plk∪P̂lk

dlki φlk(‖x− ci‖) (9)
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Fig. 2. Phantom constraints. a) the constraints of two neighboring child nodes of the bunny. The
solid shapes are regular constraints, and the crosses are phantom constraints, rotated based on
node. b) the effects of phantom constraints on the embedding function. The left side of the bunny
does not have phantom constraints from neighboring nodes, while the right side does. The color
shows the distance error between the embedding function and the original surface.

where the child node’s weights dlki are determined by solving the system of equations

∀ci ∈ Plk ∪ P̂lk : flk(ci) = hi− f̂lk(ci) (10)

Again, this node’s embedding function provides incremental refinement only and does
not change the result at the phantom constraints from other nodes:

∀ci ∈ P̂lk : flk(ci) = 0 (11)

Figure 2a shows two overlapping child nodes of the bunny. The solid shapes repre-
sent regular constraints, while the crosses represent phantom constraints. The phantom
constraints contained with the bounds of a node’s octant have been inherited from the
root node, while those outside the octant come from neighboring sibling nodes.

Figure 2b illustrates the error that can occur from overlapping embedding functions
that do not have phantom constraints. The left side of the bunny has no phantom con-
straints from neighboring octants, while the right side does have phantom constraints.
The surface is colored by the distance error between the embedding function and the
original surface mesh. Clearly there is much more error on the left side, particularly
where octants abut. Also the error bleeds into the right side of the bunny because the
functions on the left are not evaluating to 0 to the right.

Figure 3 shows slices through four embedding function of the bunny. Images 3a
and 3b use a compact RBF for the root node, while 3c and 3d use a thin plate spline at
the root. In the left pair the textured region is where the compact RBF is not defined.
Images 3a and 3c are slices through the embedding functions of just the root nodes.
The images that slice through two level hierarchies (3b and 3d) clearly show sharper
boundaries and more detail. For instance, the bottoms of the bunny are less rounded.

Adding phantom constraints outside of a given node’s bounds expands the region
of space where the node’s RBF must be evaluated. However, this expansion can be
nullified by only defining the embedding function in the original region defined by the
regular constraints. At any location with only phantom constraints within the RBF’s
radius, the embedding function returns 0.
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Fig. 3. Slices through the embedding functions. a) a compact RBF root. b) a two level hierarchy,
with a compact root. c) a thin plate spline root. d) a two level hierarchy, with a thin plate spline
root. The texture regions are where the compact RBF is undefined.

Fig. 4. Stanford’s Thai statue. The 5 levels of the hierarchy of constraints and an extracted iso-
surface. The hierarchy contains 17.5 million constraints.

4 Results

To demonstrate the efficacy of our method, we applied it to the Thai statue from Stan-
ford’s 3D Scanning Repository. The model consists of 5 million vertices to which we
added 426,245 vertices on the bottom, which was not scanned. Our implicit model has
17.5 million constraints in a 5 level octree. Figure 4 shows the five levels in the hierar-
chy and an iso-surface extracted from the embedding function.

Section 4.1 analyzes the statistics and error characteristics of our method. Sec-
tion 4.2 provides some implementation details.

4.1 Statistics

Figure 5 shows statistics for the implicit hierarchy. The upper section of the table shows
statistics for the entire model, and the middle section shows statistical averages per im-
plicit evaluation. The bottom section shows the error in the implicit surface. To compute
the statistics in the middle and bottom sections, the embedding function was evaluated
at every surface constraint location in the data set.

The implicit error of a constraint is the unsigned difference between the value a
constraint should have and the value returned by the embedding function. By default,
surface constraints should have a value of 0.



Thai statue

vertices 4,999,996

regular constraints 10,852,316

Hierarchy phantom constraints 6,632,801

statistics total constraints 17,485,117

tree nodes 799

tree height 5

build time (minutes) 127.35

Averages regular constraints 961.77

per phantom constraints 202.00

evaluation number of nodes 6.59

avg. implicit error 1.4980E-06

Error max. implicit error 1.4950E-04

avg. distance error 2.1230E-10

max. distance error 2.2700E-08

Fig. 5. Statistics for the hierarchical
model of the Thai statue.

The distance error is the distance between
a surface constraint’s location and a root (zero)
of the embedding function. The root was found
by searching the embedding function along the
constraint’s normal direction. The data set has
an extent 395.9 along its longest axis, and the
exterior constraints were offset by a distance of
10−4. Values of 0 for surface constraints and
−1 for exterior constraints of the embedding
function results in gradients on the order of 104.
Thus one would expect implicit errors on the
order of 104 times greater than the distance er-
rors, as the statistics demonstrate.

In our examples, adding phantom constraints increases the number of constraints
in the data sets by an average of 61.1% so that phantom constraints make up 37.9%
of the constraints. However, since the phantom constraints tend to occur towards the
bottom of the hierarchy, i.e. in the nodes with smaller extents, the average number of
phantom constraints encountered per function evaluation is lower. In all they represent
only 17.4% of the constraints when evaluating the embedding function.

4.2 Implementation

The example implicit hierarchy was built on a SGI Altix system with four 1.4 GHz
Itanium 2 processors and 8 GB of main memory. The most time consuming sections
of code, solving each node’s sparse matrix and computing all the constraints’ values,
were parallelized. Computing a constraint’s value is required for non-root nodes, since
its value depends on the embedding functions above it in the hierarchy. The matrices
were solved using the LDL solver in SGI’s Scientific Computing Software Library.

5 Conclusions

We have presented a technique for generating implicit surfaces that interpolate large
point sets. This method employs a hierarchical spatial partitioning that imposes a suc-
cessive series of embedding functions constrained so that when they are added to one
another, they interpolate the point set. The approach begins with the careful selection of
a representative subset of the point set from which an interpolating implicit surface that
provides a base model can be created. This base model interpolates the core subset of
data points and serves as the foundation for the coarse-to-fine hierarchy. The data space
is recursively divided into an octree with additional data points selected, and more de-
tailed embedding functions are derived for each child octant that, when added to the
base model, accurately interpolate the more complete, higher resolution model.

Neighboring spatial partitions are supplemented with phantom constraints that as-
sure smooth transitions between adjoining embedding functions. No additional blend-
ing functions are required because our compactly supported radial basis functions have
a limited radius of influence, imposing a predictable margin between partitions and



gradual diminishing of effect between them. Furthermore, this method elegantly han-
dles irregularly sampled data and hole filling because of its multiresolutional approach.

A longer version of this paper with color images can be found at the following URL:
http://erie.nlm.nih.gov/hrbf.
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